Nuclear factor of activated T cells 5 regulates vascular smooth muscle cell phenotypic modulation.
نویسندگان
چکیده
OBJECTIVE The tonicity-responsive transcription factor, nuclear factor of activated T cells 5 (NFAT5/tonicity enhancer binding protein [TonEBP]), has been well characterized in numerous cell types; however, NFAT5 function in vascular smooth muscle cells (SMCs) is unknown. Our main objective was to determine the role of NFAT5 regulation in SMCs. METHODS AND RESULTS We showed that NFAT5 is regulated by hypertonicity in SMCs and is upregulated in atherosclerosis and neointimal hyperplasia. RNAi knockdown of NFAT5 inhibited basal expression of several SMC differentiation marker genes, including smooth muscle α actin (SMαA). Bioinformatic analysis of SMαA revealed 7 putative NFAT5 binding sites in the first intron, and chromatin immunoprecipitation analysis showed NFAT5 enrichment of intronic DNA. Overexpression of NFAT5 increased SMαA promoter-intron activity, which requires an NFAT5 cis element at +1012, whereas dominant-negative NFAT5 decreased SMαA promoter-intron activity. Because it is unlikely that SMCs experience extreme changes in tonicity, we investigated other stimuli and uncovered 2 novel NFAT5-inducing factors: angiotensin II, a contractile agonist, and platelet-derived growth factor-BB (PDGF-BB), a potent mitogen in vascular injury. Angiotensin II stimulated NFAT5 translocation and activity, and NFAT5 knockdown inhibited an angiotensin II-mediated upregulation of SMαA mRNA. PDGF-BB increased NFAT5 protein, and loss of NFAT5 inhibited PDGF-BB-induced SMC migration. CONCLUSIONS We have identified NFAT5 as a novel regulator of SMC phenotypic modulation and have uncovered the role of NFAT5 in angiotensin II-induced SMαA expression and PDGF-BB-stimulated SMC migration.
منابع مشابه
Regulation of gene expression by cyclic GMP.
Cyclic GMP, produced in response to nitric oxide and natriuretic peptides, is a key regulator of vascular smooth muscle cell contractility, growth, and differentiation, and is implicated in opposing the pathophysiology of hypertension, cardiac hypertrophy, atherosclerosis, and vascular injury/restenosis. cGMP regulates gene expression both positively and negatively at transcriptional as well as...
متن کاملNFAT5 expression in bone marrow-derived cells enhances atherosclerosis and drives macrophage migration
OBJECTIVE We have previously shown that the transcription factor, nuclear factor of activated T-cells 5 (NFAT5), regulates vascular smooth muscle cell phenotypic modulation, but the role of NFAT5 in atherosclerosis is unknown. Our main objective was to determine if NFAT5 expression in bone marrow (BM)-derived cells altered atherosclerotic development and macrophage function. METHODS AND RESUL...
متن کاملGenome-wide microarray analyses identify the protein C receptor as a novel calcineurin/nuclear factor of activated T cells-dependent gene in vascular smooth muscle cell phenotypic modulation.
OBJECTIVE Calcineurin (Cn) and the nuclear factor of activated T cells (NFAT) family of transcription factors are critical in vascular smooth muscle cell (SMC) development and pathology. Here, we used a genomics approach to identify and validate NFAT gene targets activated during platelet-derived growth factor-BB (PDGF-BB)-induced SMC phenotypic modulation. METHODS AND RESULTS Genome-wide exp...
متن کاملFrom osmotic to biomechanical stress - The role of nuclear factor of activated t - cells 5 in determining the vascular smooth muscle cell phenotype
Nuclear factor of activated T-cells 5 (NFAT5) is a well-known osmoprotective transcription factor the amount and nuclear distribution of which is increased in a hyperosmolaric environment. Recently, NFAT5 was shown to control the phenotype of vascular smooth muscle cells (VSMCs) in the context of arteriosclerosis and neointimal hyperplasia by regulating the expression of smooth muscle cell diff...
متن کاملCyclosporine up-regulates Krüppel-like factor-4 (KLF4) in vascular smooth muscle cells and drives phenotypic modulation in vivo.
Cyclosporine A (CSA, calcineurin inhibitor) has been shown to block both vascular smooth muscle cell (VSMC) proliferation in cell culture and vessel neointimal formation following injury in vivo. The purpose of this study was to determine molecular and pathological effects of CSA on VSMCs. Using real-time reverse transcription-polymerase chain reaction, Western blot analysis, and immunofluoresc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 31 10 شماره
صفحات -
تاریخ انتشار 2011